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Abstract The double magnetic induction (DMI) method
has successfully been used to record head-unrestrained gaze
shifts in human subjects (Bremen et al., J Neurosci Methods
160:75–84, 2007a, J Neurophysiol, 98:3759–3769, 2007b).
This method employs a small golden ring placed on the
eye that, when positioned within oscillating magnetic fields,
induces orientation-dependent voltages in a pickup coil in
front of the eye. Here we develop and test a streamlined cali-
bration routine for use with experimental animals, in particu-
lar, with monkeys. The calibration routine requires the animal
solely to accurately follow visual targets presented at random
locations in the visual field. Animals can readily learn this
task. In addition, we use the fact that the pickup coil can be
fixed rigidly and reproducibly on implants on the animal’s
skull. Therefore, accumulation of calibration data leads to
increasing accuracy. As a first step, we simulated gaze shifts
and the resulting DMI signals. Our simulations showed that
the complex DMI signals can be effectively calibrated with
the use of random target sequences, which elicit substan-
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tial decoupling of eye- and head orientations in a natural
way. Subsequently, we tested our paradigm on three macaque
monkeys. Our results show that the data for a successful cal-
ibration can be collected in a single recording session, in
which the monkey makes about 1,500–2,000 goal-directed
saccades. We obtained a resolution of 30 arc minutes (mea-
surement range [−60,+60]◦). This resolution compares to
the fixation resolution of the monkey’s oculomotor system,
and to the standard scleral search-coil method.

Keywords DMI · Search coil · Simulation ·
Eye movements · Saccade · Macaca mulatta

1 Introduction

The double magnetic induction (DMI) method has been
successfully applied to measure eye movements in head-
restrained subjects and laboratory animals (Allik et al. 1981;
Reulen and Bakker 1982; Bour et al. 1984; Ottes et al. 1987;
Bos et al. 1988; Malpeli 1998; Zwiers et al. 2004). For this
method, the subject’s eye is positioned in the centre of two
perpendicular (horizontal and vertical) oscillating primary
magnetic fields that induce a superposition of ac-currents in
a thin, golden ring that is inserted or implanted on the sclera
of the eye. The currents in the ring in turn generate weak sec-
ondary magnetic fields that can be picked up by a coil placed
closely in front of the eye. These secondary magnetic fields
vary in a nonlinear way as a function of eye-in-head orien-
tation, whereby the measurement range strongly depends on
the exact geometrical relationships (i.e. size, distance, orien-
tation and alignment) between ring and pickup coil (Bos et al.
1988; Bremen et al. 2007a). In addition, the pickup coil also
carries the much stronger primary field components. This
latter contribution of the primary fields can be reduced by
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adding a second coil that is connected in anti-phase to the
pickup coil. If the subject’s head is fixed, then this so-called
anti-coil can be positioned within the primary fields in such
a way that the primary-field cancellation is nearly complete
(Bour et al. 1984; Ottes et al. 1987; Malpeli 1998). How-
ever, minor changes in geometry of the ring-coil/anti-coil
assembly (e.g. through mechanical vibrations) can apprecia-
bly distort the measured signals. Moreover, when the head
is unrestrained, cancellation will be far from perfect due to
small electromagnetic and geometrical differences between
pickup coil and anti-coil as well as to inhomogeneities of the
primary fields, all resulting in head-orientation-dependent
dc-offsets (Bremen et al. 2007a).

Yet, the major advantage of the DMI method when com-
pared with the classical scleral search coil (SSC) technique
(Robinson 1963; Collewijn et al. 1975) is the absence of
vulnerable connecting wires from the eye. The ring is eas-
ily implanted in laboratory animals (DMI: Bour et al. 1984;
SSC: Judge et al. 1979) and does not break. It is therefore
also more comfortable to wear on the eye, e.g. of children and
patients (Murphy et al. 2001; Irving et al. 2003). However,
the restriction to head-restrained preparations, the necessity
for a bite-board, the strong input–output nonlinearity, which,
in combination with the limited measurement range, leads to
ambiguities in the signals for angles exceeding about 20◦, as
well as the method’s sensitivity to mechanical vibrations and
artefacts have so far prevented its widespread acceptance.

Recently, we have shown that with some crucial modifica-
tions, the DMI method can be readily applied to measure two-
dimensional (2D) head-unrestrained gaze shifts in human
subjects (Bremen et al. 2007b). We introduced two criti-
cal extensions to the classical head-restrained DMI method.
First, addition of a third, frontal primary magnetic field, that
is perpendicular to the horizontal and vertical fields disam-
biguates the nonlinear DMI signal. By combining the signals
from all three fields with the associated head orientation (that
can easily be measured e.g. with the search coil technique),
the ring signal can in principle be calibrated over the full 360◦

range. The second extension is calibration of the signals with
artificial neural networks that make an analytical description
of the complicated ring signals unnecessary. The networks
account for the unknown inhomogeneities in the primary
fields, for cross-talk as the fields are not exactly perpendicu-
lar, for the unknown ring/pickup coil geometry in 3D space,
for additional position-dependent dc components that may
be introduced by nearby equipment, as well as for the com-
plex head-orientation-dependent dc-offsets that result from
imperfect cancellation of primary field components.

In our previous study, we employed an intricate calibra-
tion routine in which human subjects were asked to gener-
ate a number of precisely coordinated eye–head movements
(Bremen et al. 2007b). Although such an instructed cali-
bration paradigm is feasible for adult humans, it is quite

cumbersome (or even impossible) to apply to laboratory ani-
mals, as it would require extensive training. Our goal is to
apply the DMI method to head-unrestrained laboratory ani-
mals, like cats, gerbils, chinchillas, marmosets and macaque
and new world monkeys, while using a simple calibration
routine. We propose and test a calibration paradigm that
overcomes the forementioned problems, and demonstrate its
applicability to gaze shifts made by three rhesus monkeys.
The gaze-orienting task solely requires accurate fixation of
randomly presented visual targets that are distributed over
the range of interest. Such a paradigm can be readily learned
by experimental animals, and is already used in numerous
gaze-control studies.

2 Simulations of the head-unrestrained DMI method

In Sects. 2.2 and 2.3, we summarise the theoretical back-
ground of the DMI method for head-unrestrained gaze shifts
in two dimensions. It will become clear that an analytical
approach to calibrate real DMI signals is not feasible, as
the 3D geometrical and electromagnetic properties of the
DMI system are very difficult, if not impossible, to assess
with sufficient precision. We therefore resorted to a black-box
approach of the calibration routine, in which artificial neural
networks were trained to map the set of input signals to known
target locations. As there exists no a priori way to deter-
mine the appropriate network architecture that is capable of
calibrating all possible eye–head combinations underlying
a given gaze angle, we first explored the problem through
extensive numerical simulations. The simulations embedded
the (approximate) physics of the DMI method (described in
Sects. 2.2 and 2.3) to produce voltages of the ring-coil assem-
bly as function of eye-head orientations in space, as well as a
simplified gaze-control model that generated a rich-enough
repertoire of realistic eye–head saccadic gaze shifts with the
appropriate variability of eye–head coupling, and eye–head
kinematics (described in Sect. 2.1). The aim of the simula-
tions was to determine the minimum data set and network
architecture to produce adequate calibration accuracy across
the entire measurement range.

2.1 Simulations of eye–head gaze shifts

The purpose of the simulations was to create a simple
tool that allowed quantitative assessment of different poten-
tial calibration paradigms for later use in the experiments
with real subjects. We implemented a simplified 2D version
of Robinson’s local feedback model (Van Gisbergen et al.
1981; Van Wetter and Van Opstal 2008) that could simulate
pseudo-realistic head- and eye saccades for which the main
parameters were randomly varied over a wide range: eye-
and head saccade-component kinematics, initial eye-in-head
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Table 1 Parameters for gaze
shift and head saccade
generation

Parameter Value Description

t 400 Trial duration in samples

n Gaussian noise with µ= 0◦ and σ = 0.05◦

GhVpk 600 Horizontal gaze peak velocity in deg/sample of the BG

GvVpk 800 Vertical gaze peak velocity in deg/sample of the BG

Gm0 7 Time to rise to 70% of peak velocity in sample of the BG

GT1 150 Long time constant of the oculomotor plant → elastic properties of the muscles

Gon 80 Gaze shift onset re. begin of trial in samples

HhVpk 400 Horizontal head peak velocity in deg/sample of the BG

HvVpk 300 Horizontal head peak velocity in deg/sample of the BG

Hm0 15 Time to rise to 70% of peak velocity in sample of the BG

H T1 300 Long time constant of the head plant → elastic properties of the muscles

Hon 20 Head saccade onset re. gaze onset in samples

Hgain 0.5–1 Head gain drawn from a Gaussian distribution with µ= 0.75 and σ = 0.05

T2 20 Short time constant of oculomotor and head plant → plant’s viscosity

position, and the head-saccade gain (head amplitude divided
by desired gaze amplitude). We generated the horizontal and
vertical saccade components independently to create various
amounts of curvature in the gaze- and head trajectories. We
also added different amounts of white noise to the simulated
signals to test robustness.

Parameters of the horizontal and vertical burst generators
(BGs) differed for eye and head (see Table 1). We added
random noise to these parameters to allow for a substantial
amount of inter-trial variability, both in eye–head coupling,
as well as in eye–head kinematics and trajectories. Here, only
one basic module of the 2D eye–head system (consisting of
independent horizontal and vertical eye, and horizontal and
vertical head modules) is described.

2.1.1 Details of the gaze-shift simulations

We begin by defining the instantaneous motor error of the
module me(t) as

me(t) = L − S(t), (1)

with S(t) the instantaneous saccade displacement evoked by
a step of the target location, L . The brainstem BG encodes
saccade velocity v(t) by the following saturating nonlinear-
ity:

v(t) ≡ dS(t)
dt

= vpeak · (1 − exp(−me(t)/m0)) (2)

This BG contains two free parameters: the angular constant
mo (in deg) and the asymptotic peak velocity, vpeak (in deg/s).
Its output is fed to the neural integrator, which represents eye-
or head position S(t) (found by integrating Eq. 2 and solving
for S(t)):

S(t) = m0 · ln
(

A · exp(vpeakt/m0)

1 + A · exp(vpeakt/m0)

)
,

where A ≡ 1
1 − exp(−L/m0)

(3)

This signal is added to the scaled burst from the BG (T1 ·v(t)),
and the resulting motoneuron pulse-step signal is subse-
quently convolved with the eye-, or head-motor plant impulse
response:

h(t) = 1
T1 − T2

(exp(−t/T1) − exp(−t/T2)) (4)

with T1 the long time constant (elastic properties of the plant)
and T2 the short time constant (related to plant viscosity).
Note that since we simulated vertical and horizontal compo-
nents independently, oblique saccades did not exhibit compo-
nent stretching (e.g. Van Gisbergen et al. 1985). This detail,
however, is not essential for the purpose of this study. To
create realistic interactions between eye and head, and to
account for subject idiosyncrasy, we randomly varied the
head-saccade gain between 0.5 and 1.0 from trial to trial
(Fuller 1992). At the same time, all the generated saccades
obeyed the restriction that the eye-in-head orientation should
not exceed ±30◦ in azimuth and elevation because of phys-
ical limitations (oculomotor range). To better mimic real
experimental data, we added Gaussian noise n with µ= 0◦

and σ = 0.05◦ to each simulated sample. Note that experi-
mentally measured SDs of gaze- and head-fixation noise were
only 0.03◦ and 0.02◦, respectively. Table 1 lists the values of
all parameters for the simulated eye–head gaze shifts.

To run the same series of trials as in the experimental setup
with the monkeys (see Sect. 2.6), we simulated eye–head
gaze shifts to random target locations distributed between
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α = ± 80◦ and ε = −55 to 85◦ (see Sect. 2.4). Fixation and
target locations were chosen such that their difference did
not exceed ±50◦ in α and ε since the field of view of a sub-
ject wearing the DMI assembly was restricted to about this
range. Each simulated trial had a duration of 400 samples
and started with a fixation epoch followed by a target epoch
between sample numbers 80 and 400.

2.2 Computational analysis of simulated
head-unrestrained DMI signals

2.2.1 The idealised situation

This section summarises the physics of the double-magnetic
induction (DMI) method. For further details, the reader is
referred to Bos et al. (1988), and Bremen et al. (2007a). The
physical analysis is described for the idealised situation in
which the ring on the eye (radius Rring) and the pickup coil
in front of the eye (number of turns Npick, radius Rcoil) are
exactly aligned in the (H,V) plane, with their normal vectors
aligned when the eye is looking straight ahead, and inter-
secting in the same point of origin when the eye rotates.
The distance between the aligned centres of ring and coil
is d cm. Both are positioned within three homogeneous and
mutually perpendicular oscillating magnetic fields (horizon-
tal (H), vertical (V) and frontal (F)), with angular frequencies
ωH, ωV and ωF rad/s and strengths BH, BV and BF, respec-
tively. The magnetic fields induce alternating currents in the
ring, which depend on its orientation within the fields. In the
head-fixed case, the pickup coil is fixed in the (H,V) plane
(and hence no flux from the H,V fields), while the eye (radius
Reye) can rotate around its fixed centre in horizontal (angle
α) or vertical (angle ε) directions.

In the above mentioned case, it follows from the Biot–
Savart law that when the eye is rotated by α deg with regards
to straight ahead, the voltage induced in the pickup coil by
the induction current in the ring from the horizontal magnetic
field is given by Bos et al. (1988); Bremen et al. (2007a):

VH (α, t) = KH(t) · sin(α) · L [cos(α)] (5)

where KH(t) is a proportionality constant that only depends
on the geometry of the system and time-varying magnetic
field strength, sin(α) the strength of the magnetic flux through
the ring as function of horizontal eye rotation, and L[cos(α)]
the so-called shape factor that expresses the geometrical non-
linearity of the DMI method (see below). The coefficient
KH(t) can be expressed as

KH(t) = Ncoil · ω2
H · BH · sin(ωHt)

×
π2 · µo · R3

ring · Rcoil

b · Zelec
with

b =
√

(Reye + d)2 + R2
coil (6)

with µ the magnetic permeability, and Zelec the electrical
impedance of the ring.

The shape factor distinguishes the DMI method from
the scleral search-coil technique by introducing an addi-
tional nonlinearity that limits the measurement range to about
±30◦. It expresses the geometric dependence of the ring and
the pickup coil by (Bos et al. 1988):

L [cos(α)] =
∞∑

n=1

1
n(n + 1)

·
( c

b

)n
· P1

n

(
Reye

c

)

× P1
n

(
Reye + d

b

)
· Pn(cos(α)) with

c =
√

R2
eye+R2

ring (7)

Here, Pn are Legendre polynomials and P1
n are associated

Legendre polynomials of the first kind (about six terms suf-
fice for an approximation within 0.05%).

A similar set of equations holds for the vertical magnetic
field and vertical eye angle ε. For the frontal field the mag-
netic flux is proportional to cos(α):

VF(α, t) = KF(t) · cos(α) · L[cos(α)] (8)

Note that the L[cos(α)] term is only determined by the geom-
etry of the coil-ring assembly, and does not depend on the ori-
entation of the assembly with respect to the magnetic fields.
In contrast, the sin(α) and cos(α) factors are fully determined
by the primary magnetic flux through the ring. Thus, in the
situation that the entire ring-pickup coil assembly of Fig. 1 is
rotated by a horizontal gaze (eye-in-space) angle with respect
to the magnetic fields, g = α +γ (with γ the horizontal head
angle), only the flux-related terms in Eqs. 5 and 8 will change
and the induction voltages become

VH(α, γ , t) = KH(t) · sin(α + γ ) · L[cos(α)]
VV(α, γ , t) = 0 (9)

VF(α, γ , t) = KF(t) · cos(α + γ ) · L[cos(α)]

Pure vertical rotation angles yield a similar set of equations
(with VH(ε, δ, t) = 0). For combined horizontal/vertical
rotations only the frontal field is sensitive to changes in both
directions, so that in good approximation:

VH(α, γ , ε, δ, t) = KH(t) · sin(α + γ ) · L[cos(α)]
VV(α, γ , ε, δ, t) = KV(t) · sin(ε + δ) · L[cos(ε)] (10)

VF(α, γ , ε, δ, t) = KF(t) · cos(
√

(α + γ )2 + (ε + δ)2)

× L[cos(α)] · L[cos(ε)]

2.2.2 The real situation

It is important to note that Eq. 10 assume that the sig-
nals in the pickup coil only arise from the secondary
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Pickup Coil
Anti-Coil

Water Tube

Head Coil

Fig. 1 Frontal view of the DMI assembly. Pickup coil, anti-coil and
head coil are embedded in dental cement for protection. The water tube
used to deliver the liquid reward, the pickup coil and anti-coil are fixed
via two small steel wires to a plastics bridge that can be screwed into
threaded small cylinders implanted on the monkey’s skull. The head
coil is glued to this bridge and is also embedded in dental cement. Note
that in this picture the small laser pointer is not shown; its mounting
point is above the head coil

magnetic fields produced by the ring. However, the pri-
mary fields also directly generate a much stronger induction
voltage in the pickup coil, which for the horizontal field is
given by

VPRIM, H(γ , t) = Lcoil, H · sin(ωHt) · sin(γ ) (11)

with Lcoil, H the coil’s self-induction, and γ the horizon-
tal head orientation (similar for the vertical field, and for
vertical head orientations, δ, and for the frontal field, with
cos(

√
γ 2 + δ2) as flux). In the DMI method, these pri-

mary field contributions are cancelled by a second coil (the
anti-coil), connected in antiphase and ideally placed exactly
co-planar with the pickup coil, and with exactly the same self
induction (see Fig. 1). In that case, the total net voltages of
the entire system will follow Eq. 10.

However, in practice, the magnetic fields are (i) neither
perfectly homogeneous, (ii) nor perfectly orthogonal, (iii)
the coils are not exactly co-planar, (iv) their self-inductions
will not be identical, and (v) the centres and planes of
pickup coil and ring will not be exactly aligned. The
whole thing results in two important deviations from the
ideal Eq. 10.

First, a net head-orientation-dependent voltage from the
primary fields remains that may be quite complex, but is here
approximated by

VNET, H(γ , t)= Lcoil, H ·sin(ωHt)·[sin(γ ) − sin(γ +(φ)]
VNET, V(δ, t)= Lcoil, V ·sin(ωVt)·[sin(δ)−sin(δ+(θ)]

VNET, F(γ , δ, t) = Lcoil, F ·sin(ωFt) ·
[

cos
(√

γ 2 + δ2
)

− cos
(√

γ 2 + δ2 + (ψ

)]
(12)

in which Lcoil,(H,V,F) is the coil’s self induction for the three
fields, and the misalignment of the coils is parametrised by
angular differences (Φ, (θ , and (ψ , respectively.

Second, the ring-coil misalignment is more serious, as
it directly affects the DMI-shape factor, L[cos(x)] (which
was derived for the ideal aligned case). In that case, the
Biot–Savart law is no longer helpful, as the shape factor
changes for each particular misalignment in 3D space, which
in practice cannot be determined exactly. The coil-ring mis-
alignment introduces a shift in the monotonic measurement
range (e.g. from [−30,+30]◦ for the aligned situation, to
[−10,+50]◦ for a particular misaligned situation). To sim-
plify the math for our signal simulations we approximated
this shift by introducing a phase angle, ψ , in the shape factor:

L[cos(α)] ⇒ L[cos(α + ψ)] (13)

Our measurements (Figs. 8, 9) show that the set of signal
simulations (Eq. 1) based on these heuristic approximations
(Figs. 2, 3) are a reasonable approximation of the actual sit-
uation.

2.3 Simulation of head-unrestrained double magnetic
induction signals

The simulated gaze shifts and head saccade signals of Eq. 3
were used to calculate the resulting time-averaged (dc) DMI
signals from the horizontal, vertical and frontal fields, as
given by the analysis above, Eqs. 10–13:

VH(α, γ , ε, δ) = KH · sin(α + γ ) · L[cos(α + ψH)]
+VNET, H(γ )

VV(α, γ , ε, δ) = KV · sin(ε + δ) · L[cos(ε + ψV)]
+VNET, V(δ) (14)

VF(α, γ , ε, δ) = KF · cos
(√

(α + γ )2 + (ε + δ)2
)

· L[cos(α + ψH)] · L[cos(ε + ψV)]
+VNET, F(γ , δ)

for the horizontal (VH), vertical (VV) and frontal (VF) field
signals, respectively. To simplify the implementation we
assumed the same time-averaged constant K for all three
fields, which essentially means that the amplifiers were tuned
such that they generated the same signal strengths. To further
simplify the equations we took the geometric offset angles of
Eq. 13 the same for the horizontal and vertical fields. We also
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Fig. 2 Simulated DMI endpoint signals for the horizontal (a), vertical
(b) and frontal (c) field components. a Horizontal voltages of simu-
lated endpoints as a function of azimuth. The black circles indicate data
points. A sine was fit to the data, to remove outliers. The grey patch
depicts the area of one SD around the fit. Open circles indicate data
points that fell outside this selection criterion. Note that in the simula-
tions, all endpoints were correct by definition. The employed criterion
can thus be considered conservative. b the same as in (a) but for the
vertical component. c Frontal voltages as a function of either azimuth
(grey squares) or elevation (black circles). For a detailed description,
see text

took the self-inductions and phase shifts (Φ, (θ and (ψ

of Eq. 12 identical. Parameter values are given in Table 2.

2.4 Target generation for the calibration of simulated
gaze shifts

In the actual experiments, we made use of a LED board
attached to the wall of the experimental chamber (see
Sect. 2.6.3). To enable a quantitative comparison between
simulations and experimental results, we simulated gaze
shifts towards targets on this LED board. Target locations
were defined in a polar coordinate system. Eccentricity, R,
is measured as the angle with respect to 0◦ (straight ahead),

whereas direction, Φ, is measured relative to the horizontal
meridian. Targets could be at R = 0, 5, 9, 14, 20, 27, 35,
43◦ (rings) and Φ = 0, 30, 60, . . . , 330◦ (spokes). To pres-
ent LED targets at intermediate locations, we used a rotating
hoop with 32 LEDs (5◦ spacing in elevation: −70 to 85◦)
and an azimuth rotation resolution of <0.1◦ (range −90 to
90◦). For simulations and easy visualisation, we transformed
polar coordinates (R,Φ) into the corresponding azimuth (α)
and elevation (ε) angles (Hofman and Van Opstal 1998) by

α = arcsin(sin R · cos φ) and ε = arcsin(sin R · sin φ)

(15)

respectively. Targets were randomly drawn from these loca-
tions with the restriction that the target location did not
exceed the field-of-view (<50◦) relative to the current fix-
ation LED. The fixation location of the first trial was chosen
randomly within the field-of-view from straight ahead. For all
subsequent trials, the target location of the previous trial was
taken as the new fixation location, i.e. endpoint and starting
point of subsequent saccades were connected. This scheme
yielded a combination of saccades with different start- and
end positions and different amplitudes and directions that
sampled the whole frontal hemisphere between ±43◦.

2.5 Calibration of double-magnetic induction data

A successful calibration of the DMI signals requires end-
points corresponding to known target locations. We aimed to
extract the maximum amount of unique eye–head combina-
tions from any given trial. To achieve this, we used the fact
that the head typically lags the eye: i.e. the head is still mov-
ing when gaze has already reached the target. We selected all
simulated samples after the head had reached its peak veloc-
ity. In the simulated data set, this amounted to about 183,000
unique eye–head combinations from a total of 400,000 sam-
ples (45% [see also Sect. 2.1.1]).

We calibrated the selected gaze endpoints by applying
two three-layer feed forward neural networks, one for the
azimuth component and one for the elevation component.
The five input units of the network were (1) VH, (2) VV, (3)
VF, (4) simulated γ and (5) simulated δ, while the desired,
single output of the network was the gaze angle, α or ε that
corresponded to the target coordinates. The networks were
trained using the Bayesian-Regularization implementation
of the back-propagation algorithm (Matlab 7.0, Neural Net-
works Toolbox, The Mathworks, Inc.) to avoid over-fitting
(MacKay 1992). The trained networks were used to cali-
brate the remaining gaze shift samples, here called the test
set (55% of the data set). To assess the performance of the net-
works, the calibrated test set was compared to the simulated
gaze signal by calculating the error as the difference between
simulated and calibrated sample. The mean error and the
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Fig. 3 Simulated DMI
endpoints before (a) and after
(b) calibration. a 2D plot of the
simulated raw horizontal and
vertical voltages. Note the
pronounced signal asymmetry.
b After calibration, the
pronounced signal asymmetry
has disappeared. The endpoints
can be mapped to the target
locations accurately
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Table 2 Parameters for the
simulation of the
double-magnetic induction
signals

Parameter Value Description

Ncoil 100 Number of turns of the pickup coil

Nring 1 Number of turns of the ring

ω 75×103 ×2×pi Angular frequency of the driving primary magnetic field in rad

B 10−4 Magnetic field strength in T

µ0 1.26×10−6 Vacuum permeability/magnetic constant in H/m

Rcoil 2.5×10−2 Radius of the pickup coil in m

Rring 0.8×10−2 Radius of the ring in m

Reye 1.2×10−2 Radius of the eye in m

Zelec 1.26×10−3 Electric impedance of the ring in -

d 2×10−2 Coaxial distance between ring and pickup coil in m

Lcl 2.5 Constant that is proportional to the coils’ self-induction in a.u.

(Φ 250 Phase shift representing the angle between the pickup coil
and anti-coil for the horizontal, vertical and frontal fields
in deg

ψ 2 Misalignment between centres of rotation of the ring and
pickup coil for the horizontal, vertical and frontal fields
in deg

mean SD over all the samples and trials were used to assess
the influence of (1) the number of units in the hidden layer,
(2) the number of trials, i.e. the number of unique eye–head
combination samples and (3) the reproducibility of calibra-
tion (see Fig. 4).

2.6 Experiments

2.6.1 Subjects

Behavioral experiments were conducted with three adult
male rhesus monkeys (Macaca mulatta; MA, WO and OR,
weight 7–9 kg, respectively). All experiments were con-
ducted in accordance with the European Communities Coun-
cil Directive of November 24, 1986 (86/609/EEC) and were
approved by the local ethics committee (dier experimenten

commissie, DEC) of the Radboud University Nijmegen for
the use of laboratory animals. In each recording session, the
monkey earned small water rewards per successful trial until
it was satiated. Shortly before (∼24 h) the start of recording
sessions, daily water intake was limited to approximately
20 ml/kg, which follows the water-restriction protocol of the
University of California at Davis, CA (AUCAAC 2001).

2.6.2 Eye-head recording apparatus

The monkey was seated in a completely dark room (approx-
imately 2.5 m×2.5 m×2.5 m) facing a light-emitting diode
(LED) board used for stimulus presentation. Three orthogo-
nal pairs of single-turn field coils (cross section of the wires
six mm2) generated the primary magnetic fields and were
mounted alongside the edges of the four walls, ceiling and
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Fig. 4 Best parameters for use with the artificial neuronal networks
obtained with simulated gaze shifts. Data corresponding to the horizon-
tal network are denoted with light grey squares and those that belong to
the vertical network as dark grey circles. Note that the vertical data are
shifted to increase visibility. a Mean error, i.e. simulation–calibration,
and SD of the error as a function of network number of hidden units.
b Maximal error, i.e. simulation–calibration, as a function of network
number of hidden units. c Mean error and SD of the error as a function

of number of trials, i.e. endpoints, used for calibration (500 trials, 40
hidden units per network). d Maximal error as a function of number of
trials, i.e. endpoints, used for calibration (500 trials, 40 hidden units per
network). e Mean error and SD of the error as a function of number of
repetitions (500 trials, 40 hidden units per network). f Maximal error
as a function of number of repetitions (500 trials, 40 hidden units per
network)

floor in a Helmholtz configuration. The coils were driven
by custom-built amplifiers (horizontal field: 48 kHz, vertical
field: 60 kHz, frontal field: 80 kHz). To monitor the monkey’s
eye movements, a golden ring that fitted around the cornea
without obstructing the extraocular muscles was placed onto
the sclera underneath the conjunctiva in an aseptic surgery
(Judge et al. 1979; Bour et al. 1984). In order to measure the
induction voltages from the secondary magnetic fields from
the ring, a DMI assembly (Bremen et al. 2007b) was attached
to a head holder that had been implanted onto the skull in an
earlier surgery (Fig. 1). The assembly consisted of a pickup
coil connected antiparallel to the anti-coil (both 100 turns,
wire diameter 0.1 mm, inner diameter 2.5 cm, R = 37-,
L = 983µH at 1 kHz). The two coils, shaped roughly as an
ellipse, were cemented into a figure-eight shape so that both
laid in exactly the same plane. The pickup coil was posi-
tioned in front of the implanted eye while the anti-coil pro-
truded temporally (like a monocle). Note that in this way the
other eye was completely unobstructed, which differs from
the DMI assembly that we have used previously on human
subjects (Bremen et al. 2007b). In this way, a second pair of
coils can be mounted in front of the other eye to measure

binocular eye movements. The distance between eye and
pickup coil was approximately 1 cm. To monitor head move-
ments, we attached an additional small search coil to the
DMI assembly. Finally, we mounted a small laser pointer
(LQB-1-650, World Star Tech, Toronto, ON, Canada) to the
assembly. This laser could be used to align the monkey’s head
with the LEDs: a procedure that we employed to calibrate
the head coil (see Sect. 2.6.4.2). For liquid reward delivery,
a thin stainless steel tube was mounted on the DMI assem-
bly to which a silicone rubber tube could be attached once
the primate chair was in place. The tube was connected to a
water reservoir and a latch outside the experimental cham-
ber. All wires and the water tubing were led from the top of
the monkey’s head to a custom-built tether system consist-
ing of a metal rod attached to the monkey chair and a plastic
ring (diameter 5 cm) through which the cables were led. The
whole assembly without the tether system weighed about 50
grams.

The outputs of the DMI assembly and the head coil
were connected to six lock-in amplifiers (Princeton Applied
Research, Model 128A). Three were used for the horizon-
tal, vertical and frontal field signals of the DMI assembly
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and the other three for the head coil. These signals were
low-pass filtered at 150 Hz (4th order Butterworth, custom-
built), digitised at a rate of 1017.25 samples/s (RX6 System
3, Tucker Davis Technologies; Alachua, Florida, USA) and
finally stored on a computer’s hard disk for subsequent off-
line analysis.

2.6.3 Stimuli

The monkey faced a frame (radius: 149 cm) with twelve
spokes and seven concentric rings (LED board) mounted on
the wall of the experimental chamber. LEDs (0.2◦ diameter
as viewed by the subject, intensity 0.5 cd m−2, λ = 565 nm)
were mounted at R =0, 5, 9, 14, 20, 27, 35, 43◦ (rings) and
φ = 0, 30, 60, . . . , 330◦ (spokes) on the frame (see Sect.
2.1.3).

Target selection and data acquisition were done with an
in-house program written in C++ and Matlab running on
a PC (2.8 GHz Intel Pentium D, Dell, Windows XP). To
assure microsecond timing precision, trial information was
sent from the PC to a micro-controller that worked as a latch
initiating a trial when all hardware components were ready.

2.6.4 Paradigms

All experiments were conducted in darkness. One record-
ing session lasted for several hours, depending on the mon-
key’s motivational level. At the beginning and at the end
of an experimental session, the monkey’s head was fixed to
the primate chair via a custom-built stainless steel rod that
could be attached to the head holder on the monkey’s skull.
After head fixation, the DMI assembly—with head coil, laser
pointer and reward system—was mounted/removed. Since all
components were attached to skull-fixed anchor points, the
rigid DMI assembly could be mounted in a reproducible way
between consecutive recording sessions.

2.6.4.1 DMI calibration paradigm We trained monkeys on
a simple visual fixation task by instrumental conditioning. To
initiate a trial the head-unrestrained monkey had to press a
handle bar. A randomly selected LED was lit, extinguished
after 600–1,100 ms, upon which a different LED was illu-
minated. This sequence was repeated for a random number
of LEDs (up to six). The last LED in a sequence changed its
intensity after a randomly selected duration. The monkey had
to respond to this intensity change as quickly as possible by
releasing the handle bar within 600 ms. All LEDs in the trial
were lit for a randomised period of time (between 600 and
1,100 ms). The trial was aborted when the monkey released
the bar too early, i.e. before the intensity change.

In case of a correct trial, the monkey was rewarded with
approx. 0.2–0.4 ml of fresh water. We increased (decreased)
task difficulty by decreasing (increasing) the LED intensity

change. To perform well, the monkey needed to closely fol-
low and foveate the LEDs. In addition, we monitored the
monkey’s behaviour via an infrared video camera, bar-release
reaction times, and overall performance. This was especially
important in the initial stages of training when we could not
yet rely on calibrated eye and head signals.

Note that the definition of a trial differs for simulations
and measurements. While in the simulations one trial con-
tains one target and saccade, in the measurements, one trial
could contain up to six targets and saccades. On a typical
recording day, the monkey would make about 1,500–2,000
gaze shifts.

2.6.4.2 Head-coil calibration paradigm It is important to
note that the calibration of the DMI signal (gaze in space)
can be done with uncalibrated head-coil signals. However, to
determine eye-in-head orientations from the calibrated gaze
traces (e.g. to analyse the vestibular–ocular reflex during gaze
shifts) the head coil needs to be calibrated too. Since the head-
coil signals have a simple sinusoidal relationship with head
orientation (e.g., Eq. 11), this procedure is relatively straight-
forward. We manually aligned the monkey’s head with the
head-fixed laser pointer to the LEDs on the board. Owing to
physical constrains, it was not possible to align the head with
the most eccentric LED ring (R = 43◦) and with the upward
R = 35◦, φ = 90◦ LED. We sampled 500 ms of fixation for
a given LED, and the monkey was rewarded after each LED
with approx. 0.2–0.4 ml water via the head-fixed drinking
tube. The monkey rapidly adapted to the procedure and after
having fixated a few LEDs in this way, he actively cooperated
with the experimenter. Collection of one calibration set took
about 3–5 min.

2.6.5 Calibration

Combinations of raw head-movement data (AD values from
the horizontal and vertical channels) and known LED loca-
tions (azimuth and elevation, in deg) were used to train two
three-layer neuronal networks for head-azimuth and eleva-
tion, respectively. The networks comprised two input units
(VH − VF or VV − VF) four hidden units, and one output unit
(γ , or δ) and were trained in the same way as the gaze net-
works. In addition to a nearly linear mapping from AD values
to degrees, the networks also accounted for small inhomo-
geneities in the fields and cross-talk between the channels.
The trained networks were used to calibrate the experimental
head data yielding the γ and δ angles.

The recorded ring signals were calibrated employing the
same network architecture as described for the simulated
data. Before calibration, data were digitally low-pass filtered
at 75 Hz using a 50-point FIR (finite impulse response) fil-
ter. The networks were trained on a subset of the sampled
data. Gaze-shift and head-saccade endpoints were extracted
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as described in Sect. 2.6.3. However, the velocity criteria
were applied to the raw ring and head coil data. Note that
raw head-saccade endpoints were used in the input layer.

2.6.6 Data analysis

We calculated the spatial resolution of the DMI method by
determining the SD over the fixation epoch for each target
location individually and converted the obtained values to
minutes of arc. In order to resolve a movement, the signal
must be larger than the SD. Note that the recorded and cal-
ibrated signals do contain not only system noise but also
minute fixational movements of the eye.

Unless stated otherwise, all fits employed the least-squares
criterion.

3 Results

3.1 Simulations

3.1.1 Raw DMI signals

Figure 2 depicts simulated DMI signals of the horizontal
(Fig. 2a), vertical (Fig. 2b) and frontal (Fig. 2c) field as a
function of gaze azimuth and elevation angle (N = 492). The
simulations accounted for a 2◦ (see Table 1) misalignment of
ring and pickup coil as well as for a head-orientation-depen-
dent VNET function (see Methods, 2.1.1, and Table 1). The
pronounced nonlinearity of the signals is particularly obvi-
ous for the horizontal and vertical fields. While the linear
range is shifted to negative azimuth and elevation angles, the
nonlinear range starts already around 0◦. The strong reduc-
tion in measurement range for rightward gaze positions is
caused by the misalignment between the centres of ring and
pickup coil. The frontal field signals are plotted as a function
of azimuth (grey squares) and of elevation (black circles).
Note that the emerging pattern is more complex. Owing to
the influence of the VNET signal, data points are tilted around
0◦ azimuth/elevation. For a comparison with measured data
compare Fig. 2 to Fig. 8.

In order to check for endpoints that were extracted incor-
rectly, we fitted a cosine through the data and discarded all
data points that fell outside ±1 SD. The grey patches in
Fig. 2a and b indicate this range. Two data points were dis-
carded (plotted as open circles) as they failed to meet the
criterion (Fig. 2a). This procedure was designed to mini-
mise the inclusion of wrong endpoints for the training of the
artificial neuronal networks. As can be seen, this approach
is conservative since in the simulations all endpoints were
extracted correctly.

In Fig. 3a, we have plotted uncalibrated endpoints of
the vertical field versus those of the horizontal field. The

pronounced nonlinearity and asymmetry in the data can be
clearly seen as the data points for positive horizontal and
vertical voltages are squeezed while the negative range is
expanded. A similar pattern can be observed for the mea-
sured data (Fig. 9a).

3.1.2 Calibrated gaze signals

Figure 3b shows the gaze endpoints of Fig. 3a after calibra-
tion with two three-layer artificial neuronal networks, each
with 40 hidden units. Target locations are indicated by grey
squares and calibrated endpoints as black circles connected
with black lines to their respective target. The horizontal and
vertical networks were well able to map the complex, non-
monotonic DMI signals. The mean error, i.e. target location
minus calibrated endpoint, for the horizontal component over
500 trials was 0.00◦ with a SD of 0.17◦ and for the vertical
component 0.00◦ with a SD of 0.13◦.

In order to determine the best settings for the artificial neu-
ronal networks, we performed several optimisation simula-
tions on the entire data set. First, we determined the optimal
number of hidden units by running the calibration routine
with different numbers of hidden units (5–50 in steps of 5,
60–100 in steps of 10) for 1,000 simulated trials. This proce-
dure was repeated three times, and the resulting mean error
and the SD are shown in Fig. 4a. The maximal error is shown
in Fig. 4d. The data of the vertical component (dark grey
circles) were shifted to the right with respect to the horizon-
tal data (light grey squares) for graphical purposes only. The
mean error was smaller than 0.05◦ for both horizontal and
vertical components and did not vary with the number of
units. In fact, linear fits for both components (dashed grey
lines, vertical fit occludes horizontal fit) had a slope and an
offset of 0◦/unit and 0◦, respectively. The SD of the error,
however, decreased exponentially with the number of units
and reached its minimum at about 30–40 units. We therefore
chose 40 units for all subsequent networks.

Second, an important aspect of the simulations was to
assess the minimum number of trials needed for a good
calibration of the DMI signals. We therefore simulated a vary-
ing number of gaze shifts and calibrated the extracted end-
points. To assess the influence of the number of training trials
on performance—and therefore the number of unique eye–
head combinations—we simulated and calibrated experi-
ments with 100, 500, 1,000–5,000 (steps of 1,000) and 10,000
trials. Figure 4b and e show the mean error, SD of the error
and maximal error as a function of number of gaze shifts.
Mean error (close to 0◦) and SD (<.25◦) did not vary with
the number of trials. Note that the number of trials did not
affect the mean error either. The SD decreased slightly and
reached its minimum at about 3,000 trials. Further increasing
the number of trials did not improve performance. The max-
imum error oscillated between 1.5 and 6◦. The data point for
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Fig. 5 Overview of all simulated (black line) and calibrated (thin grey
line) saccades in one continues trace for the horizontal (a) and vertical
(c) components. Relative errors, i.e. simulation–calibration in percent,
are shown in (b) for the horizontal and in (d) for the vertical components.

The error for both components is always smaller than 10%. Histograms
of the error in degrees are depicted in (e) and (f) for the horizontal and
vertical components, respectively. The majority of errors are in the order
of ±1◦

the vertical network at 10,000 trials is due to an outlier in one
of the three repetitions. In the other two runs the maximum
error was close to 4 deg. This demonstrates a typical issue of
artificial neuronal networks. The network could get trapped
in a local minimum that results in a badly trained network.
For the simulations, we chose 500 trials as a cut-off training
length to limit computational time.

Third, to test the robustness/reproducibility of the net-
works, we repeated the network training for 500 simulated
trials with 40 hidden units 10 times. As can be seen in Fig. 4c,
the mean error and SD did not vary appreciably with the num-
ber of repetitions. However, the SD between repetitions did
vary to some degree (compare for example repetition 1 with 3
of the vertical component). Clearly, large SDs correspond to
larger maximum errors and smaller SDs to smaller maximum
errors (Fig. 4f). It is, therefore, advisable to select networks
in the training process with a small SD of the error for both
components.

So far, we have only discussed calibrated endpoints
obtained after training the networks. Figure 5a and d depicts
500 simulated (thick black line) and calibrated (grey lines)
gaze shifts. As can be seen, the calibrated gaze shifts nicely
follow the simulated horizontal (Fig. 5a) and vertical compo-
nents (Fig. 5c). A more quantitative analysis is provided by
Fig. 5b and d, which show the sample-to-sample difference
between simulation and calibration, in percent for the hor-
izontal (Fig. 5b) and the vertical component (Fig. 5d). The
error never exceeded 10%, but note that large errors were

very rare, as can be better appreciated from the histograms
of Fig. 5e (horizontal) and f (vertical). Note that in these
subplots the error is given in degrees. The far majority of
errors were at, or close to, 0◦. The number of occurrences of
errors larger than ±1◦ are not visible on the scale of the histo-
grams (105 samples horizontal; 1.5×105 samples vertical).
Overall, this shows that the networks were very well able to
calibrate not only the gaze-shift endpoints (for which they
were trained) but also the intermediate samples of simulated
head-unrestrained gaze shifts that had not been not used in
the training set.

As a further test for the quality of the calibration, we
extracted saccade parameters from the simulated gaze shifts
(prior to feeding them to the DMI conversion, Eq. 1) and
compared them to the calibrated gaze shifts. We extracted
saccade on- and offset, amplitude and peak gaze velocity.
Figure 6a depicts the peak velocity as a function of ampli-
tude. The original simulated data points are shown as black
circles; calibrated data points as grey circles. The peak veloc-
ity versus amplitude relationship was fit with an exponential
(red: simulated; blue calibrated). Data and fits for simulated
and calibrated gaze shifts are in good agreement. At ampli-
tudes above 40◦, the calibrated data tend to slightly underes-
timate the peak velocity, but this may be due to the relatively
small number of large saccades in the training sample. Fig-
ure 6b shows the error in peak velocity between simulated
and calibrated data as a function of amplitude (black circles).
The running average is plotted through the data as a grey line
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Fig. 6 Comparison of the main-sequence amplitude vs. peak-velocity
relation for simulated (black circles) and calibrated (grey circles) gaze
shifts. a Velocity plotted as a function of amplitude. Velocity increases
exponentially with amplitude. Red line exponential fit to the simulated
data and blue line fit to the calibrated data. b Difference between sim-
ulated and calibrated data as a function of amplitude. The grey line
indicates the running average through the data and the patch covers 1
SD around the running average. c Linear regression analysis by plotting
the calibrated peak velocity as a function of simulated peak velocity.
Note the high correlation

and the patch indicates the SD of the error. Although the SD
slightly increased with amplitude, the overall error remained
very small (within about 10◦/s, which is the typical noise
level). To further assess how well the calibrated data reflect
the simulated gaze shifts we plotted peak velocity obtained
from the calibration against peak velocity from the simu-
lations in Fig. 6c. As can be seen the two highly correlate
(R2 = 0.99). From these data we conclude that the calibra-
tion routine preserved the saccade kinematics well.

3.2 Measurements

Data presented in this section were collected from monkey
MA on two successive recording days. Each session lasted
for about 4 h, during which the monkey completed a total of
about 2,000 trials.

3.2.1 Raw DMI signals

Next we present measured gaze shifts and head saccades
from monkey MA equipped with the DMI assembly shown
in Fig. 1. Figure 7a shows the location and order of six targets
presented to the monkey in a representative trial. Note that
in the lower hemisphere, two rings of the setup at eccentrici-
ties R = 35 and 43◦ could not be used since the monkey was
unable to see them. In this particular trial, the monkey had
to follow six targets before the last target changed intensity
and he had to release the bar for his reward. The whole trial
lasted longer than 7 s. The monkey’s uncalibrated gaze shifts
and head saccades are shown in Fig. 7b and c, respectively.
The horizontal component is depicted as a black line, the
vertical as a dark grey line and the frontal as a light grey line.
The thick lines in different shades of grey at the bottom of
each subplot indicate the on- and offset of each target. The
shades correspond to Fig. 7a. Note that the traces both for the
DMI method and the search coil (SC) are smooth and with
little noise. Figure 7b and c also illustrate how the endpoints
for calibration were extracted. First, the offset of each target
was determined; then, we applied a velocity criterion to the
preceding 600 samples, i.e. gaze velocity had to be smaller
than 300 mV/s, a value determined after visual inspection of
the uncalibrated velocity traces. Since neighbouring samples
have similar values we selected every tenth sample from the
original 600 samples to train the networks. The reason for not
taking the mean over a given range of samples can be appre-
ciated when looking at the head saccade made towards the
third and fourth target. The head still moved while gaze was
already on target, i.e. the eye-in-head counteracted the head
movement through the operation of the VOR. These addi-
tional eye–head combinations are essential for a successful
calibration (see Bremen et al. 2007b, and the simulation sec-
tion, above). Extracted samples are indicated as thick lines in
the shading corresponding to the respective field component.

Figure 8 depicts the extracted endpoints in the same for-
mat as Fig. 2. In Fig. 8a the horizontal DMI signal is plotted
as a function of azimuth, the vertical component as a function
of elevation in Fig. 8b, and the frontal component versus azi-
muth (grey squares) and elevation (black circles) in Fig. 8c.
The endpoints were aligned such that the signal recorded at
0◦ azimuth and elevation coincided with 0 V. A comparison
with Fig. 2 shows that the simulations nicely captured the
main features of the recorded signals. The misalignment of
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Fig. 7 Uncalibrated measured
DMI and head coil signals.
a Stimulus array (open squares)
and targets (circles in different
shades of grey). The numbers
close to the targets indicate the
order of presentation.
b Recorded DMI position
signals of the horizontal (black
line), vertical (dark grey line)
and frontal (light grey line) field.
The thick grey bars at the
bottom of the plot indicate the
presentation of a target. The
shades of grey correspond to the
ones used in (a). c Same as (b)
but for the head coil signal
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Fig. 8 Measured endpoints after extraction from the saccades. The
convention is the same as used in Fig. 1

ring and pickup coil can be seen in Fig. 8a as a shift of the
linear range towards positive azimuth angles while the signal
became ambiguous for large negative azimuth locations. For
the vertical component, some target locations are missing

compared to the simulations since the monkey was unable to
see these locations (see also Fig. 7a). The frontal field nicely
exhibits the tilt due to the influence of VNET.

Fig. 9a plots the raw vertical gaze-shift component against
the horizontal signal (note that the total DMI signal contained
six channels). Again the pronounced non-monotonicity is
seen for negative azimuth locations. The shape of the target
LED board can be noted to some extent, but it is clear that
the raw signals provided a highly distorted representation
of the actual gaze shifts. Nevertheless, the neural networks
could successfully map these rather complex signals onto the
actual target array, as shown in Fig. 9b. Target locations are
indicated by grey squares while the calibrated endpoints are
shown as black circles. In total 82,655 of 3,311,057 (2.5%)
recorded samples of one session were used for this calibra-
tion. The mean error and SD for the horizontal component
were 0.00◦ and 0.87◦, respectively. For the vertical compo-
nent we obtained a mean error of 0.00◦ and a SD of 1.99◦.

3.2.2 Calibrated DMI signals

Fig 10 shows four complete examples of calibrated eye–head
gaze shifts of monkey MA in the visual-jump paradigm (top
halve of the plot), with the corresponding gaze- and head
vectorial velocities in the lower halve of the figure. Note the
clear correspondence of the 2D gaze-in-space and head-in-
space movement trajectories. As expected, the head did not
reach the target locations and typically lagged the gaze shifts
(Goossens and Van Opstal 1997). Note that the velocity pro-
files (low-pass filtered at 80 Hz) are smooth and with little
noise. The gaze shifts (black thick line) were much faster
(sometimes exceeding 800◦/s) than the head movements (red
line; up to about 200◦/s) with larger gaze shifts exhibiting
higher peak velocities.

An important aspect of the head-unrestrained DMI method
for the use with laboratory animals is a reproducible fixation
of the DMI assembly from session to session. To test whether
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this would indeed be the case for our monkey preparations,
we first trained a network on data obtained from day A (set A)
and used the resulting network to calibrate the data obtained
on the subsequent day (set B). Figure 11 compares the raw
data (left column) and calibrated data (right column) of set A
versus set B. The data were obtained by averaging endpoints
of each set for each of the 74 LED locations.

Raw data endpoints for set A (black circles) and set B
(dark grey diamonds) are shown in Fig. 11a. Note the close
correspondence between the two sets collected on the two
consecutive days. This can also be seen when looking at the
individual fields. Figure 11b plots the horizontal component
of set B as a function of the horizontal component of set A.
Figures 11c and d plots the data of the vertical and frontal
field in the same manner. Data of all fields could be fit with
a straight line. The coefficients of determination, R2, for all
three components were larger than 0.9, with slopes being
close to one and offsets close to zero.

In Fig. 11e the calibrated saccadic endpoints of set A
(black circles) and set B (dark grey diamonds) are plotted
in 2D together with the target location (light grey squares).
Endpoints for the same target are connected with black
lines. The two sets correspond well, with only very small
differences. There were only three outliers with a differ-
ence exceeding 5◦ (see also Fig. 11h). These outliers are
likely attributable to incorrect target fixations by the mon-
key, because the endpoint of one set was close to the actual
target location, while the endpoint of the other set was far off-
target.

A better comparison of the two sets is provided by Fig. 11f
and g, which plot the azimuth (Fig. 11f) and elevation
(Fig. 11g) components of set B against those of set A. Lin-
ear regression analysis on the azimuth components yielded
a slope of 0.97 and an offset of 0.01◦ with a R2 of 1.00. For
the elevation component the values were 1.00 for the slope,
0.00◦ for the offset and 0.99 for R2.

The error, i.e. set A–set B, of the azimuth (black circles)
and elevation (light grey circles) components is plotted as a
function of location in Fig. 11h. The majority of errors was
smaller than±5◦. The mean error for both the azimuth and the
elevation components were close to 0◦ with SD’s smaller than
2◦. Taken together this demonstrates that the DMI assembly
is fixed rigidly and reproducibly between successive record-
ing sessions.

Figure 12 assesses the resolution (in minutes of arc) of the
head-unrestrained DMI method for the horizontal (Fig. 12a)
and vertical (Fig. 12b) movement components. The worst res-
olution was obtained in the upper left quadrant of the vertical
component, and was about 30 min of arc. Typical values were
smaller than 10 min of arc for both components (Fig. 12b,c).
These values compare well to those previously reported for
the DMI method and for the standard SSC technique (Bremen
et al. 2007b).

4 Discussion

The data presented in this article demonstrate that the DMI
method can be successfully applied to measure head-unre-
strained gaze shifts in laboratory animals. Although we tested
our method on trained rhesus macaques, there is no reason
why the method could not be used in other experimental ani-
mals, like cats, squirrel monkeys, marmosets, or even smaller
animals like ferrets, chinchillas or mice. The only require-
ment for the method to work is the ability of the animal to
make instructed goal-directed gaze shifts toward visual target
locations.

An important aspect of the current study is the introduction
of a simple calibration routine that solely relies on accurate
fixation of randomly presented visual targets in the range
of interest. Before applying this calibration routine to real
measurements obtained with monkeys, we performed realis-
tic computer simulations that mimicked natural head-unre-
strained gaze shifts with a physical model of the resulting
DMI signals (Fig. 2). We showed that artificial neuronal net-
works could be efficiently trained to calibrate fixation end-
points with great accuracy (Fig. 3), but also that the networks
were able to interpolate the remaining data points to pre-
cisely capture the whole saccadic gaze traces (Fig. 5), while
even preserving the details of the main sequence relations,
for which the most sensitive parameter is peak gaze velocity
(Fig. 6).

The experimental data were calibrated successfully (Figs. 9,
10). In accordance with previous data (Bremen et al. 2007b)
the worst spatial resolution was about 30 min of arc, which is
well within the range of best precision of the monkey oculo-
motor system. The typical resolution of the gaze shifts, how-
ever, was below 20 min of arc and was therefore comparable
to values that have been reported with the SSC technique
(e.g. Bour et al. 1984).

4.1 Training the neuronal networks

The networks were trained on gaze endpoints and their inputs
were the raw head orientation and the recorded voltages of
the horizontal, vertical and frontal components induced by
the ring. Note that it is not necessary to use calibrated head
orientations as input to the networks. But in order to make
full use of all recorded signals, including a reconstruction of
eye-in-head orientation during gaze shifts, it is essential to
calibrate the head coil as well. This is especially important for
example in studies concerned with eye–head coordination, or
with the study of the vestibulo-ocular reflex.

For a successful calibration of the data, it is important to
feed endpoints into the networks with different gaze-head
combinations. It is noteworthy that each subject has an idi-
osyncratic way of generating head-unrestrained gaze shifts,
i.e. the contribution of the head to the total gaze shift varies
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Fig. 9 Measured DMI
endpoints before (a) and after
(b) calibration. a 2D plot of the
simulated raw horizontal and
vertical voltages. Note the
pronounced signal asymmetry.
b After calibration, the
pronounced signal asymmetry
disappears. The endpoints can
be mapped to the target locations
accurately. Compare with Fig. 2
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considerably from subject to subject (Fuller 1992); this was
also observed in our monkeys (data not shown). The cali-
bration routine deals with this idiosyncratic behavior in a
natural way. Since the subject will produce the same com-
binations during calibration and experiment there is no need
for a guided calibration paradigm, in which subjects have to
make (unnatural) coordinated eye–head movements (Bremen
et al. 2007b).

Note that the head coil data could in principle also be cal-
ibrated in a different way. The signals of the three magnetic
fields (horizontal, vertical and frontal), and thus each head
orientation (α and ε), fall on the surface of an ellipsoid. The
axes of this ellipsoid are fully determined by the properties
of the coils and the magnetic fields. The field strengths and
amplifiers of the recording system could be tuned such that
the data fall on the surface of a sphere. Calibration of the head
coil data could then be achieved by fitting the offset-corrected
data to the surface of a sphere. However, determining the
optimal fit parameters for the surface of an ellipsoid or even
a sphere is not straightforward (Gander et al. 1994; Turner
et al. 1999) and crosstalk between the fields can lead to seri-
ous distortions of the data, which has to be accounted for as
well. Although for the present study it was not necessary to
implement this calibration scheme, it could be necessary for
smaller laboratory animals, like mice, in which it is not so
easy to align the head with the calibration target.

How the neural networks solve the mapping problem of
DMI voltages into calibrated gaze positions has not been ana-
lysed in this article. Clearly, the inclusion of hidden units was
essential, and each unit represents a mixture of the external
inputs through its five input weights. In our first study on the
DMI system, which dealt with the relatively simple, idealised
one-dimensional version with only three inputs (VH, VF and
HH), we noted that a network with three hidden units sufficed
to solve the problem (Bremen et al. 2007a). For this case in
question, it is relatively straightforward to understand how
the network implements the required transformation, as each

of the three hidden-unit inputs can be simply described by the
inner product between the 3D input vector, )I = [VH, VF, HH],
and the weight vector, )W = [wVH, wVF, wHH] (e.g. Krom-
menhoek et al. 1996), and thus yields a 3D hidden-unit out-
put vector. In principle, such a 3D–3D mapping is unique,
although the hidden-unit to output weighting (3D–1D) pro-
vides an additional degree of freedom, rendering the solution
to depend on the initial conditions of the network. The situa-
tion gets more complicated when the number of independent
inputs increases to five, like in the current 2D simulations, and
the hidden units are trained to represent a highly nonlinear
five-dimensional space. Our brute-force simulations of this
simplified non-ideal geometry (Eq. 14) showed that the opti-
mal number of hidden units fell between 20 and 40 (Fig. 4).
Thus, the network’s encoding of the 5D input space is far
less trivial than for the idealised case. Because the number of
hidden units exceeds the dimensionality of the input, there is
no unique solution for this particular mapping problem (it is
overdetermined). As each unit’s input has a receptive field in
a direction given by the inner product: Rk = ∑5

n=1 wkn · In ,
and the final values of trained weights heavily depend on the
initial weight values of the network, there are infinitely many
ways in which the network can distribute the five inputs over
the 20 or more hidden units. At the network’s output unit,
the total sum of hidden unit outputs monotonically relates to
the desired gaze angle: O = ∑NHID

k=1 wok · Hk ∝ G. Again,
the hidden-to-output weight values vary from simulation to
simulation with the randomised initial conditions.

Because the problem is overdetermined, a full analysis of
the properties and tunings of the hidden units is beyond the
scope of this study, the primary aim of which was to provide
a pragmatic black-box approach to solve the problem.

4.2 Stability of the assembly

Owing to anatomical differences around the nose and eyes,
and to idiosyncratic differences of the head implants, the
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Fig. 10 Examples of calibrated gaze (black line) and head (red line)
trajectories of monkey MA performing in four different trials (trajec-
tories A–D) of the visual target following paradigm. The monkey gets
rewarded when he detects the dimming of the final target (in lightest
grey). Because the number of targets cannot be anticipated, the monkey
has foveated all intervening targets (darker grey circles) as well. The
darkest grey circle indicates the initial fixation point at (0,0)◦. Note that

eye-in-space and head-in-space follow very similar, but not identical,
trajectories. The lower half of the figure shows the associated vecto-
rial velocity profiles of gaze and head as function of time, as well as
the stimulus presentation times. Despite substantial head movements,
the peak head velocities (about 200◦/s) are much lower than the gaze
velocities (up to 900◦/s)

DMI assembly should be manufactured separately for each
individual animal. However, a given assembly can be used
virtually indefinitely, as it fits on the animal in exactly the

same way for every recording session, as demonstrated by
Fig. 11. In this way, the acquisition of calibration data in the
beginning of an animal’s training results to be a cumulative
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Fig. 11 Analysis of the stability of the DMI assembly. Left column raw
data. Right column calibrated data. Data from set A (black circles) and
B (dark grey diamonds) were collected on two consecutive days. a Raw
endpoints of set A and B. Corresponding endpoints are connected with
black lines. b Horizontal field set A as a function of horizontal field B
(black circles). The grey line is a linear fit through the data. c Same as
(b) for the vertical field. d Same as (b) for the frontal field. e Calibrated
endpoints. Networks were trained on set A and used to calibrate both
data sets. Target locations are shown as light grey squares. f Azimuth
component of set B plotted against azimuth component of set A. The
grey line is a linear fit through the data. g Same as (f) for elevation.
h Difference between set A and B of the azimuth (black circles) and
elevation (grey circles) components as function of location

process that yields better calibration results with increasing
number of recording sessions. From this point onwards, the
experimenter only has to quickly check the quality of the
calibration at the beginning of a recording session, as is now
done routinely in our lab.
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Fig. 12 Resolution of the head-unrestrained DMI method for the hori-
zontal (a) and vertical (b) component in minutes of arc (shades of grey)

5 Conclusions

Studies employing animal subjects will directly benefit from
the DMI method as presented here. Owing to the absence of
vulnerable lead wires, the DMI method is more reliable. At
the same time, the temporal and spatial resolution is compa-
rable to the resolution of the SSC technique. The calibration
routine presented here is easy to perform and straightforward
to implement. We, therefore, propose that the DMI method
is a valuable alternative to the classical SSC technique.
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